EconPapers    
Economics at your fingertips  
 

Forecasting spare part demand with installed base information: A review

Sarah Van der Auweraer, Robert N. Boute and Aris A. Syntetos

International Journal of Forecasting, 2019, vol. 35, issue 1, 181-196

Abstract: The classical spare part demand forecasting literature studies methods for forecasting intermittent demand. However, the majority of these methods do not consider the underlying demand-generating factors. The demand for spare parts originates from the replacement of parts in the installed base of machines, either preventively or upon breakdown of the part. This information from service operations, which we refer to as installed base information, can be used to forecast the future demand for spare parts. This paper reviews the literature on the use of such installed base information for spare part demand forecasting in order to asses (1) what type of installed base information can be useful; (2) how this information can be used to derive forecasts; (3) the value of using installed base information to improve forecasting; and (4) the limits of the existing methods. This serves as motivation for future research.

Keywords: Spare parts; Demand forecasting; Literature review; Maintenance; Installed base (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018301511
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:1:p:181-196

DOI: 10.1016/j.ijforecast.2018.09.002

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:35:y:2019:i:1:p:181-196