Forecasting spare part demand with installed base information: A review
Sarah Van der Auweraer,
Robert N. Boute and
Aris A. Syntetos
International Journal of Forecasting, 2019, vol. 35, issue 1, 181-196
Abstract:
The classical spare part demand forecasting literature studies methods for forecasting intermittent demand. However, the majority of these methods do not consider the underlying demand-generating factors. The demand for spare parts originates from the replacement of parts in the installed base of machines, either preventively or upon breakdown of the part. This information from service operations, which we refer to as installed base information, can be used to forecast the future demand for spare parts. This paper reviews the literature on the use of such installed base information for spare part demand forecasting in order to asses (1) what type of installed base information can be useful; (2) how this information can be used to derive forecasts; (3) the value of using installed base information to improve forecasting; and (4) the limits of the existing methods. This serves as motivation for future research.
Keywords: Spare parts; Demand forecasting; Literature review; Maintenance; Installed base (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018301511
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:1:p:181-196
DOI: 10.1016/j.ijforecast.2018.09.002
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().