Classification of intraday S&P500 returns with a Random Forest
Christoph Lohrmann and
Pasi Luukka
International Journal of Forecasting, 2019, vol. 35, issue 1, 390-407
Abstract:
Stock markets can be interpreted to a certain extent as prediction markets, since they can incorporate and represent the different opinions of investors who disagree on the implications of the available information on past and expected events and trade on their beliefs in order to achieve profits. Many forecast models have been developed for predicting the future state of stock markets, with the aim of using this knowledge in a trading strategy. This paper interprets the classification of the S&P500 open-to-close returns as a four-class problem. We compare four trading strategies based on a random forest classifier to a buy-and-hold strategy. The results show that predicting the classes with higher absolute returns, ‘strong positive’ and ‘strong negative’, contributed the most to the trading strategies on average. This finding can help shed light on the way in which using additional event outcomes for the classification beyond a simple upward or downward movement can potentially improve a trading strategy.
Keywords: Financial markets; Machine learning; Forecasting; Trading strategy; Feature selection (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018301481
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:1:p:390-407
DOI: 10.1016/j.ijforecast.2018.08.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().