Economics at your fingertips  

Predictive regressions under asymmetric loss: Factor augmentation and model selection

Matei Demetrescu () and Sinem Hacioglu Hoke ()

International Journal of Forecasting, 2019, vol. 35, issue 1, 80-99

Abstract: This paper discusses the specifics of forecasting using factor-augmented predictive regressions under general loss functions. In line with the literature, we employ principal component analysis to extract factors from the set of predictors. In addition, we also extract information on the volatility of the series to be predicted, since the volatility is forecast-relevant under non-quadratic loss functions. We ensure asymptotic unbiasedness of the forecasts under the relevant loss by estimating the predictive regression through the minimization of the in-sample average loss. Finally, we select the most promising predictors for the series to be forecast by employing an information criterion that is tailored to the relevant loss. Using a large monthly data set for the US economy, we assess the proposed adjustments in a pseudo out-of-sample forecasting exercise for various variables. As expected, the use of estimation under the relevant loss is found to be effective. Using an additional volatility proxy as the predictor and conducting model selection that is tailored to the relevant loss function enhances the forecast performance significantly.

Keywords: Predictive regressions; Many predictors; Cost-of-error function; Latent variables; Volatility (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Predictive regressions under asymmetric loss: factor augmentation and model selection (2018) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2019-11-19
Handle: RePEc:eee:intfor:v:35:y:2019:i:1:p:80-99