EconPapers    
Economics at your fingertips  
 

Euro area real-time density forecasting with financial or labor market frictions

Peter McAdam () and Anders Warne

International Journal of Forecasting, 2019, vol. 35, issue 2, 580-600

Abstract: We compare real-time density forecasts for the euro area using three DSGE models. The benchmark is the Smets and Wouters model, and its forecasts of real GDP growth and inflation are compared with those from two extensions. The first adds financial frictions and expands the observables to include a measure of the external finance premium. The second allows for the extensive labor-market margin and adds the unemployment rate to the observables. The main question that we address is whether these extensions improve the density forecasts of real GDP and inflation and their joint forecasts up to an eight-quarter horizon. We find that adding financial frictions leads to a deterioration in the forecasts, with the exception of longer-term inflation forecasts and the period around the Great Recession. The labor market extension improves the medium- to longer-term real GDP growth and shorter- to medium-term inflation forecasts weakly compared with the benchmark model.

Keywords: Bayesian inference; DSGE models; Forecast comparison; Inflation; Output; Predictive likelihood (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019300044
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Euro area real-time density forecasting with financial or labor market frictions (2018) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:2:p:580-600

DOI: 10.1016/j.ijforecast.2018.10.013

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:580-600