EconPapers    
Economics at your fingertips  
 

Combining wavelet decomposition with machine learning to forecast gold returns

Marian Risse

International Journal of Forecasting, 2019, vol. 35, issue 2, 601-615

Abstract: This paper combines the discrete wavelet transform with support vector regression for forecasting gold-price dynamics. The advantages of this approach are investigated using a relatively small set of economic and financial predictors. I measure model performance by differentiating between a statistically-motivated out-of-sample forecasting exercise and an economically-motivated trading strategy. Disentangling the predictors with respect to their time and frequency domains leads to improved forecasting performance. The results are robust compared to alternative forecasting approaches. My findings on the relative importances of such wavelet decompositions suggest that the influences of short-term and long-term trends are not stable over the full evaluation period.

Keywords: Real-time forecasting; Discrete wavelet transform; Support vector regression; Trading rule (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019300020
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:2:p:601-615

DOI: 10.1016/j.ijforecast.2018.11.008

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:601-615