Forecasting unknown-unknowns by boosting the risk radar within the risk intelligent organisation
Alasdair Marshall,
Udechukwu Ojiako,
Victoria Wang,
Fenfang Lin and
Maxwell Chipulu
International Journal of Forecasting, 2019, vol. 35, issue 2, 644-658
Abstract:
This theoretical perspective paper interprets (un)known-(un)known risk quadrants as being formed from both abstract and concrete risk knowledge. It shows that these quadrants are useful for categorising risk forecasting challenges against the levels of abstract and concrete risk knowledge that are typically available, as well as for measuring perceived levels of abstract and concrete risk knowledge available for forecasting in psychometric research. Drawing on cybersecurity risk examples, a case is made for refocusing risk management forecasting efforts towards changing unknown-unknowns into known-knowns. We propose that this be achieved by developing the ‘boosted risk radar’ as organisational practice, where suitably ‘risk intelligent’ managers gather ‘risk intelligence information’, such that the ‘risk intelligent organisation’ can purposefully co-develop both abstract and concrete risk forecasting knowledge. We also illustrate what this can entail in simple practical terms within organisations.
Keywords: Risk intelligence; Competitive intelligence; Military intelligence; Risk radar (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018301420
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:2:p:644-658
DOI: 10.1016/j.ijforecast.2018.07.015
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().