EconPapers    
Economics at your fingertips  
 

Tales from tails: On the empirical distributions of forecasting errors and their implication to risk

Evangelos Spiliotis, Konstantinos Nikolopoulos () and Vassilios Assimakopoulos

International Journal of Forecasting, 2019, vol. 35, issue 2, 687-698

Abstract: When evaluating the performances of time series extrapolation methods, both researchers and practitioners typically focus on the average or median performance according to some specific error metric, such as the absolute error or the absolute percentage error. However, from a risk-assessment point of view, it is far more important to evaluate the distributions of such errors, and especially their tails. For instance, a lack of normality and symmetry in error distributions can have significant implications for decision making, such as in stock control. Moreover, frequently these distributions can only be constructed empirically, as they may be the result of a computationally-intensive non-parametric approach, such as an artificial neural network. This study proposes an approach for evaluating the empirical distributions of forecasting methods and uses it to assess eleven popular time series extrapolation approaches across two different datasets (M3 and ForeDeCk). The results highlight some very interesting tales from the tails.

Keywords: Forecasting; Performance; Error distribution; Tails; Risk (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018301547
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:2:p:687-698

DOI: 10.1016/j.ijforecast.2018.10.004

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:687-698