Economics at your fingertips  

Bayesian forecasting of UEFA Champions League under alternative seeding regimes

Francisco Corona (), David Forrest, Juan de Dios Tena () and Michael Wiper

International Journal of Forecasting, 2019, vol. 35, issue 2, 722-732

Abstract: The evaluation of seeding rules requires the use of probabilistic forecasting models both for individual matches and for the tournament. Prior papers have employed a match-level forecasting model and then used a Monte Carlo simulation of the tournament for estimating outcome probabilities, thus allowing an outcome uncertainty measure to be attached to each proposed seeding regime, for example. However, this approach does not take into account the uncertainty that may surround parameter estimates in the underlying match-level forecasting model. We propose a Bayesian approach for addressing this problem, and illustrate it by simulating the UEFA Champions League under alternative seeding regimes. We find that changes in 2015 tended to increase the uncertainty over progression to the knock-out stage, but made limited difference to which clubs would contest the final.

Keywords: OR in sports; Seeding; Football; Monte Carlo simulation; Bayesian (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.ijforecast.2018.07.009

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2021-06-30
Handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:722-732