EconPapers    
Economics at your fingertips  
 

Predictive analysis and modelling football results using machine learning approach for English Premier League

Rahul Baboota and Harleen Kaur ()

International Journal of Forecasting, 2019, vol. 35, issue 2, 741-755

Abstract: The introduction of artificial intelligence has given us the ability to build predictive systems with unprecedented accuracy. Machine learning is being used in virtually all areas in one way or another, due to its extreme effectiveness. One such area where predictive systems have gained a lot of popularity is the prediction of football match results. This paper demonstrates our work on the building of a generalized predictive model for predicting the results of the English Premier League. Using feature engineering and exploratory data analysis, we create a feature set for determining the most important factors for predicting the results of a football match, and consequently create a highly accurate predictive system using machine learning. We demonstrate the strong dependence of our models’ performances on important features. Our best model using gradient boosting achieved a performance of 0.2156 on the ranked probability score (RPS) metric for game weeks 6 to 38 for the English Premier League aggregated over two seasons (2014–2015 and 2015–2016), whereas the betting organizations that we consider (Bet365 and Pinnacle Sports) obtained an RPS value of 0.2012 for the same period. Since a lower RPS value represents a higher predictive accuracy, our model was not able to outperform the bookmaker’s predictions, despite obtaining promising results.

Keywords: Machine learning; Feature engineering; Data mining; Predictive analysis; Random forest; Support vector machines (SVM); Ranked probability score (RPS); Gradient boosting (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018300116
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:2:p:741-755

DOI: 10.1016/j.ijforecast.2018.01.003

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:741-755