Wage against the machine: A generalized deep-learning market test of dataset value
Philip Z. Maymin
International Journal of Forecasting, 2019, vol. 35, issue 2, 776-782
Abstract:
How can you tell whether a particular sports dataset really adds value, particularly with regard to betting effectiveness? The method introduced in this paper provides a way for any analyst in almost any sport to attempt to determine the additional value of almost any dataset. It relies on the use of deep learning, comprehensive historical box score statistics, and the existence of betting markets. When the method is applied as an illustration to a novel dataset for the NBA, it is shown to provide more information than regular box score statistics alone, and appears to generate above-breakeven wagering profits.
Keywords: Machine learning; Deep learning; Sports forecasting; Gambling; Wagering; Data; Analytics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207017301152
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:2:p:776-782
DOI: 10.1016/j.ijforecast.2017.09.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().