Economics at your fingertips  

Forecasting football match results in national league competitions using score-driven time series models

Siem Jan Koopman () and Rutger Lit

International Journal of Forecasting, 2019, vol. 35, issue 2, 797-809

Abstract: We develop a new dynamic multivariate model for the analysis and forecasting of football match results in national league competitions. The proposed dynamic model is based on the score of the predictive observation mass function for a high-dimensional panel of weekly match results. Our main interest is in forecasting whether the match result is a win, a loss or a draw for each team. The dynamic model for delivering such forecasts can be based on three different dependent variables: the pairwise count of the number of goals, the difference between the numbers of goals, or the category of the match result (win, loss, draw). The different dependent variables require different distributional assumptions. Furthermore, different dynamic model specifications can be considered for generating the forecasts. We investigate empirically which dependent variable and which dynamic model specification yield the best forecasting results. We validate the precision of the resulting forecasts and the success of the forecasts in a betting simulation in an extensive forecasting study for match results from six large European football competitions. Finally, we conclude that the dynamic model for pairwise counts delivers the most precise forecasts while the dynamic model for the difference between counts is most successful for betting, but that both outperform benchmark and other competing models.

Keywords: Bivariate Poisson; Ordered probit; Skellam; Probabilistic loss function (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Forecasting Football Match Results in National League Competitions Using Score-Driven Time Series Models (2017) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2019-08-05
Handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:797-809