Forecasting dynamic return distributions based on ordered binary choice
Stanislav Anatolyev and
Jozef Baruník
International Journal of Forecasting, 2019, vol. 35, issue 3, 823-835
Abstract:
We present a simple approach to the forecasting of conditional probability distributions of asset returns. We work with a parsimonious specification of ordered binary choice regressions that imposes a connection on sign predictability across different quantiles. The model forecasts the future conditional probability distributions of returns quite precisely when using a past indicator and a past volatility proxy as predictors. The direct benefits of the model are revealed in an empirical application to the 29 most liquid U.S. stocks. The forecast probability distribution is translated to significant economic gains in a simple trading strategy. Our approach can also be useful in many other applications in which conditional distribution forecasts are desired.
Keywords: Asset returns; Predictive distribution; Conditional probability; Probability forecasting; Ordered binary choice (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019300445
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Forecasting dynamic return distributions based on ordered binary choice (2019)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:3:p:823-835
DOI: 10.1016/j.ijforecast.2019.01.005
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().