Unrestricted and controlled identification of loss functions: Possibility and impossibility results
Robert Lieli,
Maxwell B. Stinchcombe and
Viola M. Grolmusz
International Journal of Forecasting, 2019, vol. 35, issue 3, 878-890
Abstract:
The property that the conditional mean is the unrestricted optimal forecast characterizes the Bregman class of loss functions, while the property that the α-quantile is the unrestricted optimal forecast characterizes the generalized α-piecewise linear (α-GPL) class. However, in settings where the forecaster’s choice of forecasts is limited to the support of the predictive distribution, different Bregman losses lead to different forecasts. This is not true for the α-GPL class: the failure of identification is more fundamental. Motivated by these examples, we state simple conditions that can be used to ascertain whether loss functions that are consistent for the same statistical functional become identifiable when off-support forecasts are disallowed. We also study the identifying power of unrestricted forecasts within the class of smooth, convex loss functions. For any such loss ℓ, the set of losses that are consistent for the same statistical functional as ℓ is a tiny subset of this class in a precise mathematical sense. Finally, we illustrate the identification problem that is posed by the non-uniqueness of consistent losses for the moment-based loss function estimation methods proposed in the literature.
Keywords: Loss functions; Bregman loss functions; GPL loss functions; Osband’s principle; Identification; Point forecasts (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019300019
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:3:p:878-890
DOI: 10.1016/j.ijforecast.2018.11.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().