A SHARP model of bid–ask spread forecasts
Luca Cattivelli and
Davide Pirino
International Journal of Forecasting, 2019, vol. 35, issue 4, 1211-1225
Abstract:
This paper proposes an accurate, parsimonious and fast-to-estimate forecasting model for integer-valued time series with long memory and seasonality. The modelling is achieved through an autoregressive Poisson process with a predictable stochastic intensity that is determined by two factors: a seasonal intraday pattern and a heterogeneous autoregressive component. We call the model SHARP, which is an acronym for seasonal heterogeneous autoregressive Poisson. We also present a mixed-data sampling extension of the model, which adopts the historical information flow more efficiently and provides the best (among all the models considered) forecasting performances, empirically, for the bid–ask spreads of NYSE equity stocks. We conclude by showing how bid–ask spread forecasts based on the SHARP model can be exploited in order to reduce the total cost incurred by a trader who is willing to buy or sell a given amount of an equity stock.
Keywords: Bid–ask spread; Forecasting; Liquidity; Long-memory; Seasonality; Integer-valued; Econometric models (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019300743
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:4:p:1211-1225
DOI: 10.1016/j.ijforecast.2019.02.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().