Ordinal-response GARCH models for transaction data: A forecasting exercise
Stefanos Dimitrakopoulos and
Mike Tsionas
International Journal of Forecasting, 2019, vol. 35, issue 4, 1273-1287
Abstract:
We use numerous high-frequency transaction data sets to evaluate the forecasting performances of several dynamic ordinal-response time series models with generalized autoregressive conditional heteroscedasticity (GARCH). The specifications account for three components: leverage effects, in-mean effects and moving average error terms. We estimate the model parameters by developing Markov chain Monte Carlo algorithms. Our empirical analysis shows that the proposed ordinal-response GARCH models achieve better point and density forecasts than standard benchmarks.
Keywords: Conditional heteroscedasticity; In-mean effects; Leverage; Markov chain Monte Carlo; Moving average; Ordinal responses (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301335
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:4:p:1273-1287
DOI: 10.1016/j.ijforecast.2019.02.016
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().