EconPapers    
Economics at your fingertips  
 

A hybrid machine learning model for forecasting a billing period’s peak electric load days

Harshit Saxena, Omar Aponte and Katie T. McConky

International Journal of Forecasting, 2019, vol. 35, issue 4, 1288-1303

Abstract: Many models have been studied for forecasting the peak electric load, but studies focusing on forecasting peak electric load days for a billing period are scarce. This focus is highly relevant to consumers, as their electricity costs are determined based not only on total consumption, but also on the peak load required during a period. Forecasting these peak days accurately allows demand response actions to be planned and executed efficiently in order to mitigate these peaks and their associated costs. We propose a hybrid model based on ARIMA, logistic regression and artificial neural networks models. This hybrid model evaluates the individual results of these statistical and machine learning models in order to forecast whether a given day will be a peak load day for the billing period. The proposed model predicted 70% (40/57) of actual peak load days accurately and revealed potential savings of approximately USD $80,000 for an American university during a one-year testing period.

Keywords: Energy forecasting; Demand forecasting; Combining forecasts; ARIMA models; Neural Networks; Regression (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920701930144X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:4:p:1288-1303

DOI: 10.1016/j.ijforecast.2019.03.025

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:35:y:2019:i:4:p:1288-1303