Neural networks for GEFCom2017 probabilistic load forecasting
I. Dimoulkas,
P. Mazidi and
L. Herre
International Journal of Forecasting, 2019, vol. 35, issue 4, 1409-1423
Abstract:
This report describes the forecasting model which was developed by team “4C” for the global energy forecasting competition 2017 (GEFCom2017), with some modifications added afterwards to improve its accuracy. The model is based on neural networks. Temperature scenarios obtained from historical data are used as inputs to the neural networks in order to create load scenarios, and these load scenarios are then transformed into quantiles. By using a feature selection approach that is based on a stepwise regression technique, a neural network based model is developed for each zone. Furthermore, a dynamic choice of the temperature scenarios is suggested. The feature selection and dynamic choice of the temperature scenarios can improve the quantile scores considerably, resulting in very accurate forecasts among the top teams.
Keywords: GEFCom2017; Probabilistic load forecasting; Neural networks; Temperature scenarios; Feature selection (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018301778
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:4:p:1409-1423
DOI: 10.1016/j.ijforecast.2018.09.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().