Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting
Cameron Roach
International Journal of Forecasting, 2019, vol. 35, issue 4, 1439-1450
Abstract:
When forecasting time series in a hierarchical configuration, it is necessary to ensure that the forecasts reconcile at all levels. The 2017 Global Energy Forecasting Competition (GEFCom2017) focused on addressing this topic. Quantile forecasts for eight zones and two aggregated zones in New England were required for every hour of a future month. This paper presents a new methodology for forecasting quantiles in a hierarchy which outperforms a commonly-used benchmark model. A simulation-based approach was used to generate demand forecasts. Adjustments were made to each of the demand simulations to ensure that all zonal forecasts reconciled appropriately, and a weighted reconciliation approach was implemented to ensure that the bottom-level zonal forecasts summed correctly to the aggregated zonal forecasts. We show that reconciling in this manner improves the forecast accuracy. A discussion of the results and modelling performances is presented, and brief reviews of hierarchical time series forecasting and gradient boosting are also included.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018301791
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:4:p:1439-1450
DOI: 10.1016/j.ijforecast.2018.09.009
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().