Operational solar forecasting for the real-time market
Dazhi Yang,
Elynn Wu and
Jan Kleissl
International Journal of Forecasting, 2019, vol. 35, issue 4, 1499-1519
Abstract:
Despite the significant progress made in solar forecasting over the last decade, most of the proposed models cannot be readily used by independent system operators (ISOs). This article proposes an operational solar forecasting algorithm that is closely aligned with the real-time market (RTM) forecasting requirements of the California ISO (CAISO). The algorithm first uses the North American Mesoscale (NAM) forecast system to generate hourly forecasts for a 5-h period that are issued 12 h before the actual operating hour, satisfying the lead-time requirement. Subsequently, the world’s fastest similarity search algorithm is adopted to downscale the hourly forecasts generated by NAM to a 15-min resolution, satisfying the forecast-resolution requirement. The 5-h-ahead forecasts are repeated every hour, following the actual rolling update rate of CAISO. Both deterministic and probabilistic forecasts generated using the proposed algorithm are empirically evaluated over a period of 2 years at 7 locations in 5 climate zones.
Keywords: Solar forecasting; Ensemble; Numerical weather prediction; Operational forecasting; Real-time market (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019300755
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:4:p:1499-1519
DOI: 10.1016/j.ijforecast.2019.03.009
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().