EconPapers    
Economics at your fingertips  
 

Forecasting GDP growth with NIPA aggregates: In search of core GDP

Christian Garciga and Edward Knotek

International Journal of Forecasting, 2019, vol. 35, issue 4, 1814-1828

Abstract: In addition to GDP, which is measured using expenditure data, the U.S. national income and product accounts (NIPAs) provide a variety of measures of economic activity, including gross domestic income and other aggregates that exclude one or more of the components that make up GDP. Similarly to the way in which economists have attempted to use core inflation—which excludes volatile energy and food prices—to predict headline inflation, the omission of GDP components may be useful in extracting a signal as to where GDP is going. We investigate the extent to which these NIPA aggregates constitute “core GDP.” In an out-of-sample forecasting exercise using a novel real-time dataset of NIPA aggregates, we find that consumption growth and the growth of GDP excluding inventories and trade have historically outperformed a canonical univariate benchmark for forecasting GDP growth, suggesting that these are promising measures of core GDP growth.

Keywords: Forecasts; GDP; GDI; Real-time data; Survey of professional forecasters; Consumption (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301438
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:4:p:1814-1828

DOI: 10.1016/j.ijforecast.2019.03.024

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:35:y:2019:i:4:p:1814-1828