EconPapers    
Economics at your fingertips  
 

GROEC: Combination method via Generalized Rolling Origin Evaluation

Jose Augusto Fiorucci and Francisco Louzada

International Journal of Forecasting, 2020, vol. 36, issue 1, 105-109

Abstract: Combination methods have performed well in time series forecast competitions. This study proposes a simple but general methodology for combining time series forecast methods. Weights are calculated using a cross-validation scheme that assigns greater weights to methods with more accurate in-sample predictions. The methodology was used to combine forecasts from the Theta, exponential smoothing, and ARIMA models, and placed fifth in the M4 Competition for both point and interval forecasting.

Keywords: M4 competition; Forecast combination; Theta models; ARIMA models; Exponential smoothing (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301104
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:1:p:105-109

DOI: 10.1016/j.ijforecast.2019.04.013

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:36:y:2020:i:1:p:105-109