Fast and accurate yearly time series forecasting with forecast combinations
David Shaub
International Journal of Forecasting, 2020, vol. 36, issue 1, 116-120
Abstract:
It has long been known that combination forecasting strategies produce superior out-of-sample forecasting performances. In the M4 forecasting competition, a very simple forecast combination strategy achieved third place on yearly time series. An analysis of the ensemble model and its component models suggests that the competitive accuracy comes from avoiding poor forecasts, rather than from beating the best individual models. Moreover, the simple ensemble model can be fitted very quickly, can easily scale horizontally with additional CPU cores or a cluster of computers, and can be implemented by users very quickly and easily. This approach might be of particular interest to users who need accurate yearly forecasts without being able to spend significant time, resources, or expertise on tuning models. Users of the R statistical programming language can access this modeling approach using the “forecastHybrid” package.
Keywords: Automatic forecasting; Combining forecasts; Evaluating forecasts; Forecasting competitions; Software (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301566
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:1:p:116-120
DOI: 10.1016/j.ijforecast.2019.03.032
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().