EconPapers    
Economics at your fingertips  
 

Forecasting the M4 competition weekly data: Forecast Pro’s winning approach

Sarah Goodrich Darin and Eric Stellwagen

International Journal of Forecasting, 2020, vol. 36, issue 1, 135-141

Abstract: Forecast Pro forecasted the weekly series in the M4 competition more accurately than all other entrants. Our approach was to follow the same forecasting process that we recommend to our users. This approach involves determining the Key Performance Metric (KPI), establishing baseline forecasts using our automated expert selection algorithm, reviewing those baseline forecasts and customizing forecasts where needed. This article explores why this approach worked well for weekly data, discusses the applicability of the M4 competition to business forecasting and proposes some potential improvements for future competitions to make them more relevant to business forecasting.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301177
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:1:p:135-141

DOI: 10.1016/j.ijforecast.2019.03.018

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:36:y:2020:i:1:p:135-141