Forecasting the M4 competition weekly data: Forecast Pro’s winning approach
Sarah Goodrich Darin and
Eric Stellwagen
International Journal of Forecasting, 2020, vol. 36, issue 1, 135-141
Abstract:
Forecast Pro forecasted the weekly series in the M4 competition more accurately than all other entrants. Our approach was to follow the same forecasting process that we recommend to our users. This approach involves determining the Key Performance Metric (KPI), establishing baseline forecasts using our automated expert selection algorithm, reviewing those baseline forecasts and customizing forecasts where needed. This article explores why this approach worked well for weekly data, discusses the applicability of the M4 competition to business forecasting and proposes some potential improvements for future competitions to make them more relevant to business forecasting.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301177
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:1:p:135-141
DOI: 10.1016/j.ijforecast.2019.03.018
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().