Forecasting in social settings: The state of the art
Spyros Makridakis,
Rob Hyndman and
Fotios Petropoulos
International Journal of Forecasting, 2020, vol. 36, issue 1, 15-28
Abstract:
This paper provides a non-systematic review of the progress of forecasting in social settings. It is aimed at someone outside the field of forecasting who wants to understand and appreciate the results of the M4 Competition, and forms a survey paper regarding the state of the art of this discipline. It discusses the recorded improvements in forecast accuracy over time, the need to capture forecast uncertainty, and things that can go wrong with predictions. Subsequently, the review classifies the knowledge achieved over recent years into (i) what we know, (ii) what we are not sure about, and (iii) what we don’t knowIn the first two areas, we explore the difference between explanation and prediction, the existence of an optimal model, the performance of machine learning methods on time series forecasting tasks, the difficulties of predicting non-stable environments, the performance of judgment, and the value added by exogenous variables. The article concludes with the importance of (thin and) fat tails, the challenges and advances in causal inference, and the role of luck.
Keywords: Review; Knowns and unknowns; Accuracy; Uncertainty; Judgment; Causality; Machine Learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301876
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:1:p:15-28
DOI: 10.1016/j.ijforecast.2019.05.011
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().