Weighted ensemble of statistical models
Maciej Pawlikowski and
Agata Chorowska
International Journal of Forecasting, 2020, vol. 36, issue 1, 93-97
Abstract:
We present a detailed description of our submission for the M4 forecasting competition, in which it ranked 3rd overall. Our solution utilizes several commonly used statistical models, which are weighted according to their performance on historical data. We cluster series within each type of frequency with respect to the existence of trend and seasonality. Every class of series is assigned a different set of models to combine. Combination weights are chosen separately for each series. We conduct experiments with a holdout set to manually pick pools of models that perform best for a given series type, as well as to choose the combination approaches.
Keywords: Combining forecasts; Time series; Automatic forecasting; Time series clustering; Forecasting competitions (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301190
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:1:p:93-97
DOI: 10.1016/j.ijforecast.2019.03.019
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().