EconPapers    
Economics at your fingertips  
 

Predicting loss given default in leasing: A closer look at models and variable selection

Florian Kaposty, Johannes Kriebel and Matthias Löderbusch

International Journal of Forecasting, 2020, vol. 36, issue 2, 248-266

Abstract: Since the introduction of the Basel II Accord, and given its huge implications for credit risk management, the modeling and prediction of the loss given default (LGD) have become increasingly important tasks. Institutions which use their own LGD estimates can build either simpler or more complex methods. Simpler methods are easier to implement and more interpretable, but more complex methods promise higher prediction accuracies. Using a proprietary data set of 1,184 defaulted corporate leases in Germany, this study explores different parametric, semi-parametric and non-parametric approaches that attempt to predict the LGD. By conducting the analyses for different information sets, we study how the prediction accuracy changes depending on the set of information that is available. Furthermore, we use a variable importance measure to identify the input variables that have the greatest effects on the LGD prediction accuracy for each method. In this regard, we provide new insights on the characteristics of leasing LGDs. We find that (1) more sophisticated methods, especially the random forest, lead to remarkable increases in the prediction accuracy; (2) updating information improves the prediction accuracy considerably; and (3) the outstanding exposure at default, an internal rating, asset types and lessor industries turn out to be important drivers of accurate LGD predictions.

Keywords: Loss given default; Forecasting; Variable selection methods; Leasing; Machine learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301578
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:2:p:248-266

DOI: 10.1016/j.ijforecast.2019.05.009

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:36:y:2020:i:2:p:248-266