Predicting loss given default in leasing: A closer look at models and variable selection
Florian Kaposty,
Johannes Kriebel and
Matthias Löderbusch
International Journal of Forecasting, 2020, vol. 36, issue 2, 248-266
Abstract:
Since the introduction of the Basel II Accord, and given its huge implications for credit risk management, the modeling and prediction of the loss given default (LGD) have become increasingly important tasks. Institutions which use their own LGD estimates can build either simpler or more complex methods. Simpler methods are easier to implement and more interpretable, but more complex methods promise higher prediction accuracies. Using a proprietary data set of 1,184 defaulted corporate leases in Germany, this study explores different parametric, semi-parametric and non-parametric approaches that attempt to predict the LGD. By conducting the analyses for different information sets, we study how the prediction accuracy changes depending on the set of information that is available. Furthermore, we use a variable importance measure to identify the input variables that have the greatest effects on the LGD prediction accuracy for each method. In this regard, we provide new insights on the characteristics of leasing LGDs. We find that (1) more sophisticated methods, especially the random forest, lead to remarkable increases in the prediction accuracy; (2) updating information improves the prediction accuracy considerably; and (3) the outstanding exposure at default, an internal rating, asset types and lessor industries turn out to be important drivers of accurate LGD predictions.
Keywords: Loss given default; Forecasting; Variable selection methods; Leasing; Machine learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301578
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:2:p:248-266
DOI: 10.1016/j.ijforecast.2019.05.009
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().