Macroeconomic forecasting using approximate factor models with outliers
Ray Chou,
Tso-Jung Yen and
Yu-Min Yen
International Journal of Forecasting, 2020, vol. 36, issue 2, 267-291
Abstract:
In this paper we consider estimating an approximate factor model in which candidate predictors are subject to sharp spikes such as outliers or jumps. Given that these sharp spikes are assumed to be rare, we formulate the estimation problem as a penalized least squares problem by imposing a norm penalty function on those sharp spikes. Such a formulation allows us to disentangle the sharp spikes from the common factors and estimate them simultaneously. Numerical values of the estimates can be obtained by solving a principal component analysis (PCA) problem and a one-dimensional shrinkage estimation problem iteratively. In addition, it is easy to incorporate methods for selecting the number of common factors in the iterations. We compare our method with PCA by conducting simulation experiments in order to examine their finite-sample performances. We also apply our method to the prediction of important macroeconomic indicators in the U.S., and find that it can deliver performances that are comparable to those of the PCA method.
Keywords: Approximate factor model; Macroeconomic forecast; Multivariate time series; Outlier; Principal component analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301591
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:2:p:267-291
DOI: 10.1016/j.ijforecast.2019.04.020
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().