High-frequency credit spread information and macroeconomic forecast revision
Bruno Deschamps,
Christos Ioannidis and
Kook Ka
International Journal of Forecasting, 2020, vol. 36, issue 2, 358-372
Abstract:
We examine whether professional forecasters incorporate high-frequency information about credit conditions when revising their economic forecasts. Using a mixed data sampling regression approach, we find that daily credit spreads have significant predictive ability for monthly forecast revisions of output growth, at both the aggregate and individual forecast levels. The relationships are shown to be notably strong during ‘bad’ economic conditions, which suggests that forecasters anticipate more pronounced effects of credit tightening during economic downturns, indicating an amplification effect of financial developments on macroeconomic aggregates. The forecasts do not incorporate all financial information received in equal measures, implying the presence of information rigidities in the incorporation of credit spread information.
Keywords: Forecast revision; GDP forecast; Credit spread; High-frequency data; Mixed data sampling (MIDAS) (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301657
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:2:p:358-372
DOI: 10.1016/j.ijforecast.2019.04.023
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().