EconPapers    
Economics at your fingertips  
 

Forecasting election results by studying brand importance in online news

Andrea Fronzetti Colladon

International Journal of Forecasting, 2020, vol. 36, issue 2, 414-427

Abstract: This study uses the semantic brand score, a novel measure of brand importance in big textual data, to forecast elections based on online news. About 35,000 online news articles were transformed into networks of co-occurring words and analyzed by combining methods and tools from social network analysis and text mining. Forecasts made for four voting events in Italy provided consistent results across different voting systems: a general election, a referendum, and a municipal election in two rounds. This work contributes to the research on electoral forecasting by focusing on predictions based on online big data; it offers new perspectives regarding the textual analysis of online news through a methodology which is relatively fast and easy to apply. This study also suggests the existence of a link between the brand importance of political candidates and parties and electoral results.

Keywords: Election forecasting; Semantic brand score; Social network analysis; Text mining; Online news; Big data (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301906
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:2:p:414-427

DOI: 10.1016/j.ijforecast.2019.05.013

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:36:y:2020:i:2:p:414-427