Crime prediction by data-driven Green’s function method
Mami Kajita and
Seiji Kajita
International Journal of Forecasting, 2020, vol. 36, issue 2, 480-488
Abstract:
We develop an algorithm that forecasts cascading events, by employing a Green’s function scheme on the basis of the self-exciting point process model. This method is applied to open data of 10 types of crimes happened in Chicago. It shows a good prediction accuracy superior to or comparable to the standard methods which are the expectation–maximization method and prospective hotspot maps method. We find a cascade influence of the crimes that has a long-time, logarithmic tail; this result is consistent with an earlier study on burglaries. This long-tail feature cannot be reproduced by the other standard methods. In addition, a merit of the Green’s function method is the low computational cost in the case of high density of events and/or large amount of the training data.
Keywords: Crime forecasting; Green’s function; Near repeat victimization; Self-exciting point process; Expectation–maximization; Crime hotspot; Spatiotemporal forecasting (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301980
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:2:p:480-488
DOI: 10.1016/j.ijforecast.2019.06.005
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().