Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures
Richard Gerlach and
Chao Wang
International Journal of Forecasting, 2020, vol. 36, issue 2, 489-506
Abstract:
This paper extends the joint Value-at-Risk (VaR) and expected shortfall (ES) quantile regression model of Taylor (2019), by incorporating a realized measure to drive the tail risk dynamics, as a potentially more efficient driver than daily returns. Furthermore, we propose and test a new model for the dynamics of the ES component. Both a maximum likelihood and an adaptive Bayesian Markov chain Monte Carlo method are employed for estimation, the properties of which are compared in a simulation study. The results favour the Bayesian approach, which is employed subsequently in a forecasting study of seven financial market indices. The proposed models are compared to a range of parametric, non-parametric and semi-parametric competitors, including GARCH, realized GARCH, the extreme value theory method and the joint VaR and ES models of Taylor (2019), in terms of the accuracy of one-day-ahead VaR and ES forecasts, over a long forecast sample period that includes the global financial crisis in 2007–2008. The results are favorable for the proposed models incorporating a realized measure, especially when employing the sub-sampled realized variance and the sub-sampled realized range.
Keywords: Realized variance; Realized range; Semi-parametric; Markov chain Monte Carlo; Value-at-Risk; Expected shortfall (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301992
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:2:p:489-506
DOI: 10.1016/j.ijforecast.2019.07.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().