Probabilistic wind forecasting up to three months ahead using ensemble predictions for geopotential height
Bastien Alonzo,
Peter Tankov,
Philippe Drobinski and
Riwal Plougonven
International Journal of Forecasting, 2020, vol. 36, issue 2, 515-530
Abstract:
We develop a method for forecasting the distribution of the daily surface wind speed at timescales from 15-days to 3-months in France. On such long-term timescales, ensemble predictions of the surface wind speed have poor performance, however, the wind speed distribution may be related to the large-scale circulation of the atmosphere, for which the ensemble forecasts have better skill. The information from the large-scale circulation, represented by the 500 hPa geopotential height, is summarized into a single index by first running a PCA and then a polynomial regression. We estimate, over 20 years of daily data, the conditional probability density of the wind speed at a specific location given the index. We then use the ECMWF seasonal forecast ensemble to predict the index for horizons from 15-days to 3-months. These predictions are plugged into the conditional density to obtain a distributional forecast of surface wind. These probabilistic forecasts remain sharper than the climatology up to 1-month forecast horizon. Using a statistical postprocessing method to recalibrate the ensemble leads to further improvement of our probabilistic forecast, which then remains calibrated and sharper than the climatology up to 3-months horizon, particularly in the north of France in winter and fall.
Keywords: Wind energy resource; Wind speed forecasting; Seasonal forecasting; Probabilistic forecasting; Ensemble forecasts; Ensemble model output statistics (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019302018
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:2:p:515-530
DOI: 10.1016/j.ijforecast.2019.07.005
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().