Comparing density forecasts in a risk management context
Cees Diks and
Hao Fang
International Journal of Forecasting, 2020, vol. 36, issue 2, 531-551
Abstract:
We compare multivariate and univariate approaches to assessing the accuracy of competing density forecasts of a portfolio return in the downside part of the support. We argue that the common practice of performing multivariate forecast comparisons can be problematic in the context of assessing portfolio risk, since better multivariate forecasts do not necessarily correspond to better aggregate portfolio return forecasts. This is illustrated by examples that involve (skew) elliptical distributions and an application to daily returns of a number of US stock prices. In addition, time-varying test statistics and Value-at-Risk forecasts provide empirical evidence of regime changes over the last decades.
Keywords: Density forecast evaluation; Scoring rules; Skew-elliptical distributions; Portfolio risk assessment; Value-at-Risk forecasts (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920701930202X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:2:p:531-551
DOI: 10.1016/j.ijforecast.2019.07.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().