EconPapers    
Economics at your fingertips  
 

Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?

Štefan Lyócsa and Neda Todorova

International Journal of Forecasting, 2020, vol. 36, issue 2, 628-645

Abstract: We study the potential merits of using trading and non-trading period market volatilities to model and forecast the stock volatility over the next one to 22 days. We demonstrate the role of overnight volatility information by estimating heterogeneous autoregressive (HAR) model specifications with and without a trading period market risk factor using ten years of high-frequency data for the 431 constituents of the S&P 500 index. The stocks’ own overnight squared returns perform poorly across stocks and forecast horizons, as well as in the asset allocation exercise. In contrast, we find overwhelming evidence that the market-level volatility, proxied by S&P Mini futures, matters significantly for improving the model fit and volatility forecasting accuracy. The greatest model fit and forecast improvements are found for short-term forecast horizons of up to five trading days, and for the non-trading period market-level volatility. The documented increase in forecast accuracy is found to be associated with the stocks’ sensitivity to the market risk factor. Finally, we show that both the trading and non-trading period market realized volatilities are relevant in an asset allocation context, as they increase the average returns, Sharpe ratios and certainty equivalent returns of a mean–variance investor.

Keywords: High frequency data; Realized volatility; Overnight volatility; Forecasting; Market risk (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019302250
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:2:p:628-645

DOI: 10.1016/j.ijforecast.2019.08.002

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:36:y:2020:i:2:p:628-645