Forecasting value at risk with intra-day return curves
Gregory Rice,
Tony Wirjanto and
Yuqian Zhao
International Journal of Forecasting, 2020, vol. 36, issue 3, 1023-1038
Abstract:
Methods for incorporating high resolution intra-day asset price data into risk forecasts are being developed at an increasing pace. Existing methods such as those based on realized volatility depend primarily on reducing the observed intra-day price fluctuations to simple scalar summaries. In this study, we propose several methods that incorporate full intra-day price information as functional data objects in order to forecast value at risk (VaR). Our methods are based on the recently proposed functional generalized autoregressive conditionally heteroscedastic (GARCH) models and a new functional linear quantile regression model. In addition to providing daily VaR forecasts, these methods can be used to forecast intra-day VaR curves, which we considered and studied with companion backtests to evaluate the quality of these intra-day risk measures. Using high-frequency trading data from equity and foreign exchange markets, we forecast the one-day-ahead daily and intra-day VaR with the proposed methods and various benchmark models. The empirical results suggested that the functional GARCH models estimated based on the overnight cumulative intra-day return curves exhibited competitive performance with benchmark models for daily risk management, and they produced valid intra-day VaR curves.
Keywords: Forecasting comparison; Functional GARCH; Intra-day VaR backtesting; Overnight cumulative intra-day return; Value at risk (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019302626
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:3:p:1023-1038
DOI: 10.1016/j.ijforecast.2019.10.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().