Quantile forecasting with mixed-frequency data
Luiz Lima (),
Fanning Meng and
Lucas Godeiro
International Journal of Forecasting, 2020, vol. 36, issue 3, 1149-1162
Abstract:
We analyze the quantile combination approach (QCA) of Lima and Meng (2017) in situations with mixed-frequency data. The estimation of quantile regressions with mixed-frequency data leads to a parameter proliferation problem, which can be addressed through extensions of the MIDAS and soft (hard) thresholding methods towards quantile regression. We use the proposed approach to forecast the growth rate of the industrial production index, and our results show that including high-frequency information in the QCA achieves substantial gains in terms of forecasting accuracy.
Keywords: High-frequency predictors; Quantile regression; LASSO; Elastic net (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018301833
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:3:p:1149-1162
DOI: 10.1016/j.ijforecast.2018.09.011
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().