EconPapers    
Economics at your fingertips  
 

Quantile forecasting with mixed-frequency data

Luiz Lima (), Fanning Meng and Lucas Godeiro

International Journal of Forecasting, 2020, vol. 36, issue 3, 1149-1162

Abstract: We analyze the quantile combination approach (QCA) of Lima and Meng (2017) in situations with mixed-frequency data. The estimation of quantile regressions with mixed-frequency data leads to a parameter proliferation problem, which can be addressed through extensions of the MIDAS and soft (hard) thresholding methods towards quantile regression. We use the proposed approach to forecast the growth rate of the industrial production index, and our results show that including high-frequency information in the QCA achieves substantial gains in terms of forecasting accuracy.

Keywords: High-frequency predictors; Quantile regression; LASSO; Elastic net (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018301833
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:3:p:1149-1162

DOI: 10.1016/j.ijforecast.2018.09.011

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:36:y:2020:i:3:p:1149-1162