Forecasting third-party mobile payments with implications for customer flow prediction
Shaohui Ma and
Robert Fildes
International Journal of Forecasting, 2020, vol. 36, issue 3, 739-760
Abstract:
Forecasting customer flow is key for retailers in making daily operational decisions, but small retailers often lack the resources to obtain such forecasts. Rather than forecasting stores’ total customer flows, this research utilizes emerging third-party mobile payment data to provide participating stores with a value-added service by forecasting their share of daily customer flows. These customer transactions using mobile payments can then be utilized further to derive retailers’ total customer flows indirectly, thereby overcoming the constraints that small retailers face. We propose a third-party mobile-payment-platform centered daily mobile payments forecasting solution based on an extension of the newly-developed Gradient Boosting Regression Tree (GBRT) method which can generate multi-step forecasts for many stores concurrently. Using empirical forecasting experiments with thousands of time series, we show that GBRT, together with a strategy for multi-period-ahead forecasting, provides more accurate forecasts than established benchmarks. Pooling data from the platform across stores leads to benefits relative to analyzing the data individually, thus demonstrating the value of this machine learning application.
Keywords: Analytics; Big data; Customer flow forecasting; Machine learning; Forecasting many time series; Multi-step-ahead forecasting strategy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019302365
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:3:p:739-760
DOI: 10.1016/j.ijforecast.2019.08.012
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().