EconPapers    
Economics at your fingertips  
 

Bias corrections for exponentially transformed forecasts: Are they worth the effort?

Matei Demetrescu, Vasyl Golosnoy and Anna Titova

International Journal of Forecasting, 2020, vol. 36, issue 3, 761-780

Abstract: In many economic applications, it is convenient to model and forecast a variable of interest in logs rather than in levels. However, the reverse transformation from log forecasts to levels introduces a bias. This paper compares different bias correction methods for such transformations of log series which follow a linear process with various types of error distributions. Based on Monte Carlo simulations and an empirical study of realized volatilities, we find no choice of correction method that is uniformly best. We recommend the use of the variance-based correction, either by itself or as part of a hybrid procedure where one first decides (using a pretest) whether the log series is highly persistent or not, and then proceeds either without bias correction (high persistence) or with bias correction (low persistence).

Keywords: Bias correction; Linear autoregression; Linex forecast; Log transformation; Volatility forecast (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019302390
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:3:p:761-780

DOI: 10.1016/j.ijforecast.2019.09.001

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2025-03-23
Handle: RePEc:eee:intfor:v:36:y:2020:i:3:p:761-780