Realized volatility forecast with the Bayesian random compressed multivariate HAR model
Jiawen Luo and
Langnan Chen
International Journal of Forecasting, 2020, vol. 36, issue 3, 781-799
Abstract:
We develop a Bayesian random compressed multivariate heterogeneous autoregressive (BRC-MHAR) model to forecast the realized covariance matrices of stock returns. The proposed model randomly compresses the predictors and reduces the number of parameters. We also construct several competing multivariate volatility models with the alternative shrinkage methods to compress the parameter’s dimensions. We compare the forecast performances of the proposed models with the competing models based on both statistical and economic evaluations. The results of statistical evaluation suggest that the BRC-MHAR models have the better forecast precision than the competing models for the short-term horizon. The results of economic evaluation suggest that the BRC-MHAR models are superior to the competing models in terms of the average return, the Shape ratio and the economic value.
Keywords: Realized volatility forecast; Bayesian random compressed; Multivariate HAR model; Forecast precision evaluations; Economic evaluations (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019302468
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:3:p:781-799
DOI: 10.1016/j.ijforecast.2019.09.002
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().