An information-theoretic approach for forecasting interval-valued SP500 daily returns
T.S. Tuang Buansing,
Amos Golan and
Aman Ullah
International Journal of Forecasting, 2020, vol. 36, issue 3, 800-813
Abstract:
We develop an iterative and efficient information-theoretic estimator for forecasting interval-valued data, and use our estimator to forecast the SP500 returns up to five days ahead using moving windows. Our forecasts are based on 13 years of data. We show that our estimator is superior to its competitors under all of the common criteria that are used to evaluate forecasts of interval data. Our approach differs from other methods that are used to forecast interval data in two major ways. First, rather than applying the more traditional methods that use only certain moments of the intervals in the estimation process, our estimator uses the complete sample information. Second, our method simultaneously selects the model (or models) and infers the model’s parameters. It is an iterative approach that imposes minimal structure and statistical assumptions.
Keywords: Entropy; Information; Information theoretic methods; Interval-valued data; Iterative process; Model selection; SP500 index (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920701930247X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:3:p:800-813
DOI: 10.1016/j.ijforecast.2019.09.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().