Measuring public opinion via digital footprints
Roberto Cerina and
Raymond Duch
International Journal of Forecasting, 2020, vol. 36, issue 3, 987-1002
Abstract:
Do digital traces accurately reflect individual preferences? Can signals from social media be used to measure public opinion? This paper provides evidence in favour of these hypotheses. We test a regression and post-stratification strategy that combines samples of digital traces with a stratification frame containing individual-level socio-economic data, in order to generate area forecasts of the outcome social phenomena of interest. In our example, we forecast the two-party vote of Democrats and Republicans in the 2018 Texas congressional district and Senate election. Our implementation assumes we can observe, and sample, individuals signaling their preference by favoring one virtual location over another; in our case, visiting Democrat versus Republican Facebook pages during the election campaign. Over the course of seven weeks preceding the mid-term elections we generate vote share forecasts which do not use any traditional survey data as input. Our results indicate that individuals leave digital traces that reflect their preferences.
Keywords: Social media; Opinion polling; Matching; Stratification; Voting (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019302602
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:3:p:987-1002
DOI: 10.1016/j.ijforecast.2019.10.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().