Forecasting global equity market volatilities
Yaojie Zhang,
Feng Ma and
Yin Liao
International Journal of Forecasting, 2020, vol. 36, issue 4, 1454-1475
Abstract:
Motivated by a common belief that the international stock market volatilities are synonymous with information flow, this paper proposes a parsimonious way to combine multiple market information flows and assess whether cross-national volatility flows contain important information content that can improve the accuracy of international volatility forecasting. We concentrate on realized volatilities (RV) derived from the intra-day prices of 22 international stock markets, and employ the heterogeneous autoregressive (HAR) framework, along with two common diffusion indices that are constructed based on the simple mean and first principal component (PC) of the 22 stock market RVs, to forecast future volatilities of each market for 1-day, 1-week, and 1-month ahead. We provide strong evidence that the use of the cross-national information reflected by the simple and parsimonious common indices enhances the predictive accuracy of international volatilities at all forecasting horizons. Alternative volatility measures, estimation window sizes, and forecasting evaluation tests confirm the robustness of our results. Finally, our strategy of constructing common diffusion indices is also feasible for international market jumps.
Keywords: Global equity market; Realized volatility; Common indices; Augmented HAR model; Forecasting (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (65)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020300248
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:4:p:1454-1475
DOI: 10.1016/j.ijforecast.2020.02.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().