The effect of spatiotemporal resolution on predictive policing model performance
Anneleen Rummens and
Wim Hardyns
International Journal of Forecasting, 2021, vol. 37, issue 1, 125-133
Abstract:
Being able to anticipate crime such that new crime events can be dealt with effectively or prevented entirely, leads police forces worldwide to look at applying predictive policing, which provides predictions of times and places at risk for crime, such that proactive preventative measures can be taken. Ideally, predictive policing models predict crime at a high spatio-temporal level, while also providing optimal prediction performance. The main objective of this paper is therefore to evaluate the impact of varying grid resolution, temporal resolution and historical time frame on prediction performance. To investigate this, we analyse home burglary data from a large city in Belgium and predict new crime events using a range of parameter values, comparing the resulting prediction performances. Given the potential prediction performance costs associated with prediction at a high spatio-temporal resolution, consideration should be given to balance practical requirements with performance requirements.
Keywords: Predictive policing; Crime forecasting; Spatiotemporal forecasting; Decision making; Predictive modeling (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020300558
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:1:p:125-133
DOI: 10.1016/j.ijforecast.2020.03.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().