Boosting nonlinear predictability of macroeconomic time series
Heikki Kauppi and
Timo Virtanen
International Journal of Forecasting, 2021, vol. 37, issue 1, 151-170
Abstract:
We apply the boosting estimation method in order to investigate to what extent and at what horizons macroeconomic time series have nonlinear predictability that comes from their own history. Our results indicate that the U.S. macroeconomic time series have more exploitable nonlinear predictability than previous studies have found. On average, the most favorable out-of-sample performance is obtained via a two-stage procedure, where a conventional linear prediction model is fitted first and the boosting technique is applied to build a nonlinear model for its residuals.
Keywords: Boosting; Forecasting; Linear autoregression; Macroeconomic time series; Mean squared error; Nonlinearity (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020300571
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:1:p:151-170
DOI: 10.1016/j.ijforecast.2020.03.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().