EconPapers    
Economics at your fingertips  
 

Bayesian median autoregression for robust time series forecasting

Zijian Zeng and Meng Li

International Journal of Forecasting, 2021, vol. 37, issue 2, 1000-1010

Abstract: We develop a Bayesian median autoregressive (BayesMAR) model for time series forecasting. The proposed method utilizes time-varying quantile regression at the median, favorably inheriting the robustness of median regression in contrast to the widely used mean-based methods. Motivated by a working Laplace likelihood approach in Bayesian quantile regression, BayesMAR adopts a parametric model bearing the same structure as autoregressive models by altering the Gaussian error to Laplace, leading to a simple, robust, and interpretable modeling strategy for time series forecasting. We estimate model parameters by Markov chain Monte Carlo. Bayesian model averaging is used to account for model uncertainty, including the uncertainty in the autoregressive order, in addition to a Bayesian model selection approach. The proposed methods are illustrated using simulations and real data applications. An application to U.S. macroeconomic data forecasting shows that BayesMAR leads to favorable and often superior predictive performance compared to the selected mean-based alternatives under various loss functions that encompass both point and probabilistic forecasts. The proposed methods are generic and can be used to complement a rich class of methods that build on autoregressive models.

Keywords: Bayesian model averaging; Bayesian information criterion; Laplace distributions; Markov chain Monte Carlo; Quantile regression (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301734
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:2:p:1000-1010

DOI: 10.1016/j.ijforecast.2020.11.002

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:37:y:2021:i:2:p:1000-1010