EconPapers    
Economics at your fingertips  
 

The uncertainty in extreme risk forecasts from covariate-augmented volatility models

Yannick Hoga

International Journal of Forecasting, 2021, vol. 37, issue 2, 675-686

Abstract: For a GARCH-type volatility model with covariates, we derive asymptotically valid forecast intervals for risk measures, such as the Value-at-Risk or Expected Shortfall. To forecast these, we use estimators from extreme value theory. In the volatility model, we allow for leverage effects and the inclusion of exogenous variables, e.g., volatility indices or high-frequency volatility measures. In simulations, we find coverage of the forecast intervals to be adequate for sufficiently extreme risk levels and sufficiently large samples, which is consistent with theory. Finally, we investigate if covariate information from volatility indices or high-frequency data improves risk forecasts for major US stock indices. While—in our framework—volatility indices appear to be helpful in this regard, intra-day data are not.

Keywords: Extreme value theory; Forecast intervals; High-frequency volatility measures; Risk forecasts; Volatility indices (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301242
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:2:p:675-686

DOI: 10.1016/j.ijforecast.2020.08.009

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:37:y:2021:i:2:p:675-686