Testing forecast accuracy of expectiles and quantiles with the extremal consistent loss functions
Yu-Min Yen and
Tso-Jung Yen
International Journal of Forecasting, 2021, vol. 37, issue 2, 733-758
Abstract:
Forecast evaluations aim to choose an accurate forecast for making decisions by using loss functions. However, different loss functions often generate different ranking results for forecasts, which complicates the task of comparisons. In this paper, we develop statistical tests for comparing performances of forecasting expectiles and quantiles of a random variable under consistent loss functions. The test statistics are constructed with the extremal consistent loss functions of Ehm et al. (2016). The null hypothesis of the tests is that a benchmark forecast at least performs equally well as a competing one under all extremal consistent loss functions. It can be shown that if such a null holds, the benchmark will also perform at least equally well as the competitor under all consistent loss functions. Thus under the null, when different consistent loss functions are used, the result that the competitor does not outperform the benchmark will not be altered. We establish asymptotic properties of the proposed test statistics and propose to use the re-centered bootstrap to construct their empirical distributions. Through simulations, we show that the proposed test statistics perform reasonably well. We then apply the proposed method to evaluations of several different forecast methods.
Keywords: Consistent loss function; Expectile; Extremal consistent loss function; Forecast; Quantile (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301424
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:2:p:733-758
DOI: 10.1016/j.ijforecast.2020.09.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().