Conformal prediction interval estimation and applications to day-ahead and intraday power markets
Christopher Kath and
Florian Ziel
International Journal of Forecasting, 2021, vol. 37, issue 2, 777-799
Abstract:
In this study, we investigated the application of the conformal prediction (CP) concept in the context of short-term electricity price forecasting. In particular, we determined the most important aspects related to the utility of CP, as well as explaining why this simple but highly effective idea has proved useful in other application areas and why its characteristics make it promising for short-term power applications. We compared the performance of CP with various state-of-the-art electricity price forecasting models, such as quantile regression averaging, in an empirical out-of-sample study of three short-term electricity time series. We combined CP with various underlying point forecast models to demonstrate its versatility and behavior under changing conditions. Our findings suggest that CP yields sharp and reliable prediction intervals in short-term power markets. We also inspected the effects of each of the model components to provide path-based guideline regarding how to find the best CP model for each market.
Keywords: Energy forecasting; Prediction intervals; Electricity price forecasting; Probability forecasting; Quantile regression; Linear models (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301473
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:2:p:777-799
DOI: 10.1016/j.ijforecast.2020.09.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().