Evaluating quantile-bounded and expectile-bounded interval forecasts
James W. Taylor
International Journal of Forecasting, 2021, vol. 37, issue 2, 800-811
Abstract:
In many different contexts, decision-making is improved by the availability of probabilistic predictions. The accuracy of probabilistic forecasting methods can be compared using scoring functions and insight provided by calibration tests. These tests evaluate the consistency of predictions with the observations. Our main agenda in this paper is interval forecasts and their evaluation. Such forecasts are usually bounded by two quantile forecasts. However, a limitation of quantiles is that they convey no information regarding the size of potential exceedances. By contrast, the location of an expectile is dictated by the whole distribution. This prompts us to propose expectile-bounded intervals. We provide interpretation, a consistent scoring function and a calibration test. Before doing this, we reflect on the evaluation of forecasts of quantile-bounded intervals and expectiles, and suggest extensions of previously proposed calibration tests in order to guard against strategic forecasting. We illustrate ideas using day-ahead electricity price forecasting.
Keywords: Quantiles; Expectiles; Intervals; Scoring functions; Calibration tests; Electricity prices (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301485
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:2:p:800-811
DOI: 10.1016/j.ijforecast.2020.09.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().