EconPapers    
Economics at your fingertips  
 

Forecasting the volatility of asset returns: The informational gains from option prices

Vance Martin, Chrismin Tang and Wenying Yao

International Journal of Forecasting, 2021, vol. 37, issue 2, 862-880

Abstract: A new class of forecasting models is proposed that extends the realized GARCH class of models through the inclusion of option prices to forecast the variance of asset returns. The VIX is used to approximate option prices, resulting in a set of cross-equation restrictions on the model’s parameters. The full model is characterized by a nonlinear system of three equations containing asset returns, the realized variance, and the VIX, with estimation of the parameters based on maximum likelihood methods. The forecasting properties of the new class of forecasting models, as well as a number of special cases, are investigated and applied to forecasting the daily S&P500 index realized variance using intra-day and daily data from September 2001 to November 2017. The forecasting results provide strong support for including the realized variance and the VIX to improve variance forecasts, with linear conditional variance models performing well for short-term one-day-ahead forecasts, whereas log-linear conditional variance models tend to perform better for intermediate five-day-ahead forecasts.

Keywords: Realized GARCH; VIX; Leverage effect; Volatility forecasting; S&P 500 index (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301539
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:2:p:862-880

DOI: 10.1016/j.ijforecast.2020.09.012

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:37:y:2021:i:2:p:862-880